151 research outputs found

    Modeling the Effects of Multiple Myeloma on Kidney Function

    Full text link
    Multiple myeloma (MM), a plasma cell cancer, is associated with many health challenges, including damage to the kidney by tubulointerstitial fibrosis. We develop a mathematical model which captures the qualitative behavior of the cell and protein populations involved. Specifically, we model the interaction between cells in the proximal tubule of the kidney, free light chains, renal fibroblasts, and myeloma cells. We analyze the model for steady-state solutions to find a mathematically and biologically relevant stable steady-state solution. This foundational model provides a representation of dynamics between key populations in tubulointerstitial fibrosis that demonstrates how these populations interact to affect patient prognosis in patients with MM and renal impairment.Comment: Included version of model without tumor with steady-state analysis, corrected equations for free light chains and renal fibroblasts in model with tumor to reflect steady-state analysis, updated abstract, updated and added reference

    The Role of Osteocytes in Targeted Bone Remodeling: A Mathematical Model

    Get PDF
    Until recently many studies of bone remodeling at the cellular level have focused on the behavior of mature osteoblasts and osteoclasts, and their respective precursor cells, with the role of osteocytes and bone lining cells left largely unexplored. This is particularly true with respect to the mathematical modeling of bone remodeling. However, there is increasing evidence that osteocytes play important roles in the cycle of targeted bone remodeling, in serving as a significant source of RANKL to support osteoclastogenesis, and in secreting the bone formation inhibitor sclerostin. Moreover, there is also increasing interest in sclerostin, an osteocyte-secreted bone formation inhibitor, and its role in regulating local response to changes in the bone microenvironment. Here we develop a cell population model of bone remodeling that includes the role of osteocytes, sclerostin, and allows for the possibility of RANKL expression by osteocyte cell populations. This model extends and complements many of the existing mathematical models for bone remodeling but can be used to explore aspects of the process of bone remodeling that were previously beyond the scope of prior modeling work. Through numerical simulations we demonstrate that our model can be used to theoretically explore many of the most recent experimental results for bone remodeling, and can be utilized to assess the effects of novel bone-targeting agents on the bone remodeling process

    Cannabinoid CB1 receptor inhibition blunts adolescent-typical increased binge alcohol and sucrose consumption in male C57BL/6J mice

    Get PDF
    Increased binge alcohol consumption has been reported among adolescents as compared to adults in both humans and rodent models, and has been associated with serious long-term health consequences. However, the neurochemical mechanism for age differences in binge drinking between adolescents and adults has not been established. The present study was designed to evaluate the mechanistic role of the cannabinoid CB1 receptor in adolescent and adult binge drinking. Binge consumption was established in adolescent and adult male C57BL/6J mice by providing access to 20% alcohol or 1% sucrose for 4h every other day. Pretreatment with the CB1 antagonist/inverse agonist AM-251 (0, 1, 3, and 10mg/kg) in a Latin square design dose-dependently reduced adolescent alcohol consumption to adult levels without altering adult intake. AM-251 (3mg/kg) also reduced adolescent but not adult sucrose consumption. Adolescent reductions in alcohol and sucrose were not associated with alterations in open-field locomotor activity or thigmotaxis. These findings point to age differences in CB1 receptor activity as a functional mediator of adolescent-typical increased binge drinking as compared to adults. Developmental alterations in endocannabinoid signaling in the adolescent brain may therefore be responsible for the drinking phenotype seen in this age group

    Adolescent C57BL/6J Mice Show Elevated Alcohol Intake, but Reduced Taste Aversion, as Compared to Adult Mice: A Potential Behavioral Mechanism for Binge Drinking: ELEVATED ALCOHOL INTAKE IN ADOLESCENCE

    Get PDF
    Binge alcohol drinking during adolescence is a serious health problem which may increase future risk of an alcohol use disorder. Although there are several different procedures by which to preclinically model binge-like alcohol intake, limited-access procedures offer the advantage of achieving high voluntary alcohol intake and pharmacologically relevant blood alcohol concentrations (BACs). Therefore, in the current study, developmental differences in binge-like alcohol drinking using a limited-access cycling procedure were examined. In addition, as alcohol drinking has been negatively correlated with sensitivity to the aversive properties of alcohol, we examined developmental differences in sensitivity to an alcohol-induced conditioned taste aversion (CTA)

    CaMKII α -GluA1 Activity Underlies Vulnerability to Adolescent Binge Alcohol Drinking

    Get PDF
    Binge drinking during adolescence is associated with increased risk for developing alcohol use disorders (AUDs); however, the neural mechanisms underlying this liability are unclear. In this study, we sought to determine if binge-drinking alters expression or phosphorylation of two molecular mechanisms of neuroplasticity, calcium/calmodulin dependent kinase II alpha (CaMKIIα) and the GluA1 subunit of AMPA receptors (AMPAR) in addiction-associated brain regions. We also asked if activation of CaMKIIα-dependent AMPAR activity escalates binge-like drinking

    Precursors of extreme increments

    Get PDF
    We investigate precursors and predictability of extreme increments in a time series. The events we are focusing on consist in large increments within successive time steps. We are especially interested in understanding how the quality of the predictions depends on the strategy to choose precursors, on the size of the event and on the correlation strength. We study the prediction of extreme increments analytically in an AR(1) process, and numerically in wind speed recordings and long-range correlated ARMA data. We evaluate the success of predictions via receiver operator characteristics (ROC-curves). Furthermore, we observe an increase of the quality of predictions with increasing event size and with decreasing correlation in all examples. Both effects can be understood by using the likelihood ratio as a summary index for smooth ROC-curves

    Inhibition of Geranylgeranyl Diphosphate Synthase is a Novel Therapeutic Strategy for Pancreatic Ductal Adenocarcinoma

    Get PDF
    Rab proteins play an essential role in regulating intracellular membrane trafficking processes. Rab activity is dependent upon geranylgeranylation, a post-translational modification that involves the addition of 20-carbon isoprenoid chains via the enzyme geranylgeranyl transferase (GGTase) II. We have focused on the development of inhibitors against geranylgeranyl diphosphate synthase (GGDPS), which generates the isoprenoid donor (GGPP), as anti-Rab agents. Pancreatic ductal adenocarcinoma (PDAC) is characterized by abnormal mucin production and these mucins play important roles in tumor development, metastasis and chemo-resistance. We hypothesized that GGDPS inhibitor (GGDPSi) treatment would induce PDAC cell death by disrupting mucin trafficking, thereby inducing the unfolded protein response pathway (UPR) and apoptosis. To this end, we evaluated the effects of RAM2061, a potent GGDPSi, against PDAC. Our studies revealed that GGDPSi treatment activates the UPR and triggers apoptosis in a variety of human and mouse PDAC cell lines. Furthermore, GGDPSi treatment was found to disrupt the intracellular trafficking of key mucins such as MUC1. These effects could be recapitulated by incubation with a specific GGTase II inhibitor, but not a GGTase I inhibitor, consistent with the effect being dependent on disruption of Rab-mediated activities. In addition, siRNA-mediated knockdown of GGDPS induces upregulation of UPR markers and disrupts MUC1 trafficking in PDAC cells. Experiments in two mouse models of PDAC demonstrated that GGDPSi treatment significantly slows tumor growth. Collectively, these data support further development of GGDPSi therapy as a novel strategy for the treatment of PDAC
    corecore